Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins.
نویسندگان
چکیده
This study presents a global transcriptional analysis of the cold shock response of Shewanella oneidensis MR-1 after a temperature downshift from 30 degrees C to 8 or 15 degrees C based on time series microarray experiments. More than 700 genes were found to be significantly affected (P < or = 0.05) upon cold shock challenge, especially at 8 degrees C. The temporal gene expression patterns of the classical cold shock genes varied, and only some of them, most notably so1648 and so2787, were differentially regulated in response to a temperature downshift. The global response of S. oneidensis to cold shock was also characterized by the up-regulation of genes encoding membrane proteins, DNA metabolism and translation apparatus components, metabolic proteins, regulatory proteins, and hypothetical proteins. Most of the metabolic proteins affected are involved in catalytic processes that generate NADH or NADPH. Mutational analyses confirmed that the small cold shock proteins, So1648 and So2787, are involved in the cold shock response of S. oneidensis. The analyses also indicated that So1648 may function only at very low temperatures.
منابع مشابه
Global transcriptome analysis of the heat shock response of Shewanella oneidensis.
Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal ...
متن کاملMolecular Dynamics of the Shewanella oneidensis Response to Chromate Stress*□S
Temporal genomic profiling and whole-cell proteomic analyses were performed to characterize the dynamic molecular response of the metal-reducing bacterium Shewanella oneidensis MR-1 to an acute chromate shock. The complex dynamics of cellular processes demand the integration of methodologies that describe biological systems at the levels of regulation, gene and protein expression, and metabolit...
متن کاملMolecular dynamics of the Shewanella oneidensis response to chromate stress.
Temporal genomic profiling and whole-cell proteomic analyses were performed to characterize the dynamic molecular response of the metal-reducing bacterium Shewanella oneidensis MR-1 to an acute chromate shock. The complex dynamics of cellular processes demand the integration of methodologies that describe biological systems at the levels of regulation, gene and protein expression, and metabolit...
متن کاملGlobal transcriptome analysis of Tropheryma whipplei in response to temperature stresses.
Tropheryma whipplei, the agent responsible for Whipple disease, is a poorly known pathogen suspected to have an environmental origin. The availability of the sequence of the 0.92-Mb genome of this organism made a global gene expression analysis in response to thermal stresses feasible, which resulted in unique transcription profiles. A few genes were differentially transcribed after 15 min of e...
متن کاملDifferential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus
Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 12 شماره
صفحات -
تاریخ انتشار 2006